PACKAGED TERMINAL AIR CONDITIONER (PTAC)
CERTIFIED DRAWING

UNIT SPECIFICATIONS+

PROJECT DATE BY REVISIONS
PURCHASER Purchaser P.O. # QTY DATE BY DESCRIPTION
ARCHITECT Arquitect
SHIP DATE
SLEEVES
HVAC CONTR. Hvac Contractor ENCLOSURE
GEN. CONTR. Gen Contractor CHASSIS

DESIGNATION MODEL NUMBER QTY
A
B
C
TOTAL

SERIES MODEL # 5RSAN07 5RSAN09 5RSAN13 8RSAN07 8RSAN09 8RSAN13 8RSAN15 8RSAN18

COOLING CAPACITY* 7,500 9,600 12,220 7,500 9,600 12,700 14,500 16,600
EER 11.9 11.2 11.2 11.9 11.2 11.2 10.1 9.5
HEATING CAPACITY (HOT WATER)** 17,200 17,200 17,200 17,200 17,200 17,200 19,500 19,500
HEATING CAPACITY (STEAM)*** 18,700 18,700 18,700 18,700 18,700 18,700 20,200 20,200
ELECTRIC HEATING MAX. (KW) 1.50 1.50 3.00 1.50 1.50 3.00 3.00 3.00
VOLTAGE 115 115 115 208/230 208/230 208/230 208/230 208/230
AMPERAGE 5.5 7.5 10.3 3.0 4.1 6.0 7.1 8.5
WATTS 630 857 1,091 630 857 1,133 1,435 1,747
CFM ROOM AIR HIGH 350 400 450 350 400 450 475 525
CFM ROOM AIR LOW 245 280 315 245 280 315 333 368
CFM ROOM HEAT HIGH 245 280 315 245 280 315 333 368
CFM ROOM HEAT LOW 210 210 210 210 210 210 210 210
WEIGHT NET/SHIP 113/129 117/133 117/133 113/129 117/133 117/133 132/148 141/157

PERFORMANCE DATA

GENERAL NOTES:
1: REPLACEMENT USE ONLY.

SPECIFICATION NOTES:
1: *= BTUH @ 80°F DB/67°F WB INDOORS; 95°F DB OUTDOORS.
2: **= BTUH @ 200°F E.W.T.; 65°F E.A.T. & 2 G.P.M. FLOW RATE.
3: ***= BTUH @ 2 PSIG STEAM & 65°F E.A.T.
4: FOR CAPACITIES AT CONDITIONS OTHER THAN THOSE SHOWN IN NOTES 1-3 ABOVE USE GRAPHICS BELOW.

* PER ICE-AIR’S ONGOING DEVELOPMENT PROGRAM, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE
PRODUCT SPECIFICATIONS
PACKAGED TERMINAL AIR CONDITIONER (PTAC)

ICE AIR HI SPEC™ UNITS
‘RSAN’ SERIES UNITS

1. **Equipment**: Provide “RSAN” Series Packaged Terminal Air Conditioners (PTACs), as manufactured by Ice Air, LLC.

2. **Components**: Air conditioner to consist of wall sleeve, exterior louver, heating coil assembly, cooling chassis and room enclosure. Units to operate at either 115 volt, 208 / 230 volt, single phase, 60 hertz circuits.

3. **Wall Sleeves**: By Others. Min 42”W x 16”H x 13.25”D.

4. **Louver**: Exterior louver to be horizontal, extruded aluminum blade-type construction with clear anodized (painted Duranar) finish. Louver to be supplied with stainless steel fastening hardware and must be capable of being installed from within the wall sleeve. Louvers at panel wall locations to be supplied by others.

5. **Chassis**: Cooling chassis to be a self-contained, slide-in assembly consisting of a sealed refrigerant system, evaporator and condenser sections with separate PSC motors (single motor units are not acceptable), Unit mounted controls and line cord. Provide a permanent, washable aluminum mesh filter with each unit. Wired for 24V MV as standard 115v/208V Optional.

5a. **Refrigeration System**: Sealed refrigerant system to consist of high efficiency rotary compressor, copper tube / aluminum fin evaporator and condenser coils, refrigeration metering device consisting of a capillary tube expansion system and interconnecting tubing. System to be factory charged and sealed and capable of operating in the cooling mode to an outdoor ambient temperature of 35°F. All units to be manufactured with R410A Green refrigerant; units containing R22 or R407C refrigerant are not acceptable.

5b. **Evaporator Section**: Evaporator motor and tangential blower wheel to be mounted behind the evaporator coil. Tangential blower wheel to be fabricated from aluminum and to be directly driven by a multi-speed PSC motor with built-in thermal overload protector. Evaporator section to contain an integral stamped and powder coated steel drain pan, draining into the condenser section.
5c. **Condenser Section:** Condenser section to contain a separate PSC motor and plastic or metal propeller fan with an integral slinger ring. Condenser motor to cycle with compressor and to run during the cooling cycle only.

5d. **Condensate Disposal:** Condensate to drain from the Evaporator coil into the exterior condenser base pan. Condensate disposal to be accomplished by the entrainment of water particles in the condenser air stream and evaporation upon the hot condenser coil. No building condensate drain lines are to be required.

5e. **Chassis Sheet Metal:** Chassis sheet metal parts to be manufactured entirely of 18 gauge and 20 gauge galvanized steel. Chassis base pan to be powder coated inside and out to prevent corrosion of sheet metal pan. Chassis to be manufactured with flanges that mate with the wall sleeve interior flanges and creates a positive weather seal using crushable pressure-sensitive foam tape, thereby preventing air and water infiltration. Chassis seal must be an integral part of unit construction, and use of attached sealing angles or channels is not acceptable.

5f. **Unit Controls:** Unit controls to include a digital controller with integral electronic thermostat. Provide unit mounted seven-day programmable thermostat. Include standard low-temperature control to activate motorized heating control valve below 45°F. Interior room temperature, and Freezestat to be mounted on the evaporator coil only (condenser mounted freezestats are unacceptable) to provide true temperature readings.

6. **Heating Assembly (Hydronic Heat):** By Others.

7. **Room Enclosure (Cabinet):** Room enclosure to be (flat top) type and to be fabricated of 18 gauge galvanneal paint grip furniture steel. Enclosure front cover to be fabricated from 20 gauge galvanneal steel and to be removable without the use of tools. Enclosure to be finished in (Antique White) (Arctic White) baked powder coat finish. Room enclosure to mount to wall sleeve. Provide concealed flanges with clearance holes as an alternate means of enclosure attachment by fastening directly to the interior wall. Enclosure kick plate to be vertically adjustable.

8. **Warranty and Code Compliance:** Unit to be guaranteed free of defects in material and workmanship for one year from date of delivery. Units to be ETL listed for safety in the United States and Canada, to have New York City MEA and BEC approvals, to be in compliance with all local, state and federal energy efficiency and building codes and to be tested in accordance with current ARI standards.